Residual Stress, Adhesion and Crystallization of Ion-Sputtered and Ibed Processed NiTi Films

Author:

Walles B.,Chang L.,Grummon D. S.

Abstract

AbstractWhen conventional sputtering is used to deposit nickel-titanium thin films at temperatures below ∼623 - 723 Kelvins, the resultant structures are amorphous and the films must be annealed to form the requisite B2 parent ordering. This invites complications related to interface diffusion and chemical reaction with components of the substrate. For the present work, thin films of near-equiatomic NiTi were prepared on potassium chloride, (100) single-crystal silicon, and Si3N4 passivated silicon substrates by ion sputtering and by ion beam enhanced deposition (IBED). We have investigated residual stress levels produced by these processes, evaluated substrate adhesion levels, and explored the crystallization behavior of NiTi films grown under conditions of concurrent low-energy inert gas ion bombardment. Residual stresses of ionsputtered and IBED films were measured using profilometric techniques. Film crystallization behavior was studied by transmission electron microscopy of as-deposited films. Films produced by unassisted ion sputtering showed compressive residual stresses in the as-deposited amorphous state, which became highly tensile after annealing, leading to spontaneous cracking and delamination. Preliminary results from IBED experiments showed a reduction in the asdeposited stress, and improved adhesion. Under certain conditions, ion enhancement of the deposition process promoted film crystallization during deposition at moderate substrate temperature, producing a dispersion of extremely fine particles, indexed as Ni3Ti.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3