Author:
Worsley Marcus A.,Bent Stacey F.,Gates Stephen M.,Kumar Kaushik,Dalton Timothy,Hedrick Jeffrey C.
Abstract
AbstractThe current challenge in designing new low-k dielectrics is realizing sufficient mechanical and chemical stability such that the material can be integrated into current damascene schemes. The material of interest in this study is a nonporous SiCOH composite (carbon-doped silicon oxide, also known as organosilicate glass “OSG”) for use as an intermetal dielectric (IMD). During integration of this IMD, processing steps such as etch, resist strip and chemicalmechanical polishing for planarization may chemically alter the outer layer of the dielectric. Here, spectroscopic ellipsometry is used to characterize the modified layer of SiCOH films after exposure to different resist strip plasmas. The data are analyzed based on a 2-layer model, consisting of a carbon-deficient layer on the surface of the low-k SiCOH dielectric. This model is supported by XPS and FTIR data. The effects of two types of plasma etch chemistry on the formation of this modified layer were studied, and differences between the two chemistries were found. The 2-layer model accurately describes the modifications produced by the oxidizing plasma, but its description of the modified layer formed by the plasma involving nitrogen is not complete. A 3-layer model with an additional nitrogen-doped layer is suggested.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献