Pulsed–light Crystallization of Thin Film Silicon, Germanium, and Silicon Germanium Alloy

Author:

Yan Baojie,Toner William,Dubey Mukul,Fan Qihua,Jiang Chun-Sheng,Stevenson David

Abstract

ABSTRACTWe report the recent progress of crystallization of amorphous silicon (a-Si), amorphous germanium (a-Ge) and amorphous silicon germanium alloy (a-SiGe) using a pulsed-Xenon-lamp system with multiple lamps. The precursor materials were deposited using a sputtering machine on display glass substrates maintained on a rotary holder. The RF powers on the silicon and germanium targets were varied to control the Ge/Si ratio in the materials. The film thickness was in the range of 50-100 nm, targeting the application in thin film transistors (TFT). The samples were pre-heated to 350-450°C in a conveyer chamber with nitrogen flow before the crystallization. The materials were characterized using AFM, Raman and Spectroscopic Ellipsometry. We demonstrated that we can uniformly crystallize a-Si, a-SiGe, and a-Ge with a single-pulse or multiple-pulse process on 10×5 cm2 glass substrates. We found that the required crystallization power for a-Ge is much lower than for a-Si. The power needed to crystallize a-SiGe is between the power required for a-Ge and a-Si crystallizations, and it increased with increasing Si fraction. No Raman signal was measurable in the as-deposited films. Strong Raman peaks at 520 cm-1 and 290 cm-1 were observed in the pulsed-lamp crystallized poly-Si and poly-Ge films, respectively. Distinct Ge-Ge, Si-Ge, and Si-Si vibration modes were observed at ~285 cm-1, ~390 cm-1, and ~470 cm-1, respectively, in the poly-SiGe films formed after the pulsed-light treatments. Their intensity ratios and the peak positions depended on the Ge/Si ratio and the light intensity used for the crystallization. AFM images showed the formation of large grains with increased surface roughness.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3