Influence of surface treatment on adhesion of iCVD PGMA thin films for wafer-level bonding

Author:

Bharamaiah Jeevendrakumar Vijay Jain,Altemus Bruce A.,Gildea Adam J.,Bergkvist Magnus

Abstract

ABSTRACTThis work demonstrates wafer bonding using initiated chemical vapor deposition (iCVD) poly(glycidylmethacrylate) (PGMA) thin films, and studies the impact of surface treatment to manipulate adhesion energy between polymer film and silicon substrate. Substrates were modified with organosilanes or nitrogen plasma prior to iCVD and bonding. Adhesion was characterized by measuring critical energy release rate (Gc) using a 4-point bend technique. Results demonstrate a correlation between substrate surface energy and polymer-substrate adhesion energy where, depending on the functional group, close to an order of magnitude variation in adhesion energy was observed. These results point to minimal covalent interaction between polymer and substrate for these samples. Exposing the bonded wafers to a thermal anneal step led to an improved grafting of PGMA to substrate. For grafted films, the sample failure mode shifted from adhesive to cohesive, with drastic increase in Gc. These findings demonstrate that the adhesion energy and failure mode of iCVD-PGMA bonded wafers can be manipulated through surface functionalization and thermal treatment, which enable both temporary and permanent chip-bonding applications using iCVD polymer films as adhesives.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3