The Engineering of Silicon Wafer Material Properties Through Vacancy Concentration Profile Control and the Achievement of Ideal Oxygen Precipitation Behavior

Author:

Falster R.,Gambaro D.,Olmo M.,Cornara M.,Korb H.

Abstract

AbstractA new kind of silicon wafer and a new class of materials engineering techniques for silicon wafers is described. This wafer, called the “Magic Denuded Zone” or MDZ wafer, is produced through the manipulation of the vacancy concentration and, in particular, vacancy concentration depth profiles in the wafer prior to the development of oxygen precipitates in subsequent heat treatments. The result is a wafer with ideal oxygen precipitation behavior for use in all types of integrated circuit applications. The methods used to prepare such wafers combine Frenkel pair generation with injection and the use of surface sinks. Simulations of the vacancy profiles produced by these techniques are presented and discussed. It is shown that within the range of vacancy concentration accessible by these techniques (up to ca. 1013 cm−3) the rate and oxygen concentration dependence of oxygen clustering can be substantially modified. Such techniques can be used to precisely engineer unique and desirable oxygen-related defect performance in silicon wafers both in terms of distribution and rate of defect formation. One result of the application of such techniques is an ideally precipitating silicon wafer in which the resulting oxygen precipitate profile (denuded zone depth and bulk density of precipitates) is independent of the concentration of oxygen of the wafer, the details of the crystal growth process used to prepare the wafer and, to a very large extent, the details of thermal cycles used to process the wafer into an electronic device. Optimal, generic and reliable internal gettering performance is achieved in such a wafer

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3