Author:
Zschech Ehrenfried,Meyer Moritz A.,Langer Eckhard
Abstract
AbstractIn-situSEM electromigration studies were performed at fully embedded via/line interconnect structures to visualize the time-dependent void evolution in inlaid copper interconnects. Void formation, growth and movement, and consequently interconnect degradation, depend on both interface bonding and copper microstructure. Two phases are distinguished for the electromigration-induced interconnect degradation process: In the first phase, agglomerations of vacancies and voids are formed at interfaces and grain boundaries, and voids move along weak interfaces. In the second phase of the degradation process, they merge into a larger void which subsequently grows into the via and eventually causes the interconnect failure. Void movement along the copper line and void growth in the via are discontinuous processes, whereas their step-like behavior is caused by the copper microstructure. Directed mass transport along inner surfaces depends strongly on the crystallographic orientation of the copper grains. Electromigration lifetime can be drastically increased by changing the copper/capping layer interface. Both an additional CoWP coating and a local copper alloying with aluminum increase the bonding strength of the top interface of the copper interconnect line, and consequently, electromigration-induced mass transport and degradation processes are reduced significantly.
Publisher
Springer Science and Business Media LLC
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献