The Inverted Meyer-Neldel Rule in the Conductance of Nanostructured Silicon Field-Effect Devices

Author:

Schropp R.E.I.,Meiling H.

Abstract

AbstractThin film transistors (TFTs) offer the possibility to study the electronic transport properties of an intrinsic semiconductor as a function of the Fermi level position without the introduction of dopants and/or doping related defects. Recently, we reported on the first TFTs incorporating nanostructured silicon deposited with the Hot-Wire Chemical Vapor Deposition technique. These structures offer significant advantages over conventional plasma-deposited amorphous silicon TFTs. First of all, the HW deposited nanocrystalline silicon (nc-Si:H) TFTs do not show any threshold voltage shift upon prolonged gate voltage stress. Therefore, it is now possible to study the transport characteristics at a relatively large gate voltage in a controlled fashion, unhampered by any drift of the characteristics due to the creation of metastable electronic defect states and/or charge trapping. Second, the result of the field effect is that the Fermi energy moves into the conduction band of the virtually defect-free nanocrystalline domains in the channel region of the TFT. As the effective mobility gap of the surrounding amorphous phase is higher than that of the silicon crystallites, the Fermi energy is driven deep into the band-tail distribution of the amorphous phase, a situation that could never be achieved in purely amorphous silicon TFTs nor by heavily doping an amorphous semiconductor. Thus, the nanostructured nature of the silicon thin film near the gate insulator allows to shift the Fermi level far into the tail states region of the amorphous phase. This situation reveals for the first time the inverted Meyer-Neldel relationship in an intrinsic semiconductor.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3