Quantifying the Kinetics of Crystal Growth by Oriented Aggregation

Author:

Burrows Nathan D.,Yuwono Virany M.,Penn R. Lee

Abstract

AbstractOriented aggregation is a nonclassical crystal growth mechanism resulting in new secondary particles composed of crystallographically aligned primary crystallites. These secondary crystals often have unique and symmetry-defying morphologies, can be twinned, and can contain stacking faults and other significant defects. A wide range of materials, such as titanium dioxide, iron oxides, selenides and sulfides, and metal oxyhydroxides, are known to grow by oriented aggregation under certain conditions. Evidence for oriented aggregation also has been observed in natural materials. Over the last decade, reports of this crystal growth mechanism have appeared with increasing frequency in the scientific literature. The development of kinetic models aimed at improving our fundamental understanding as well as facilitating purposeful control over size, size distribution, and shape has ranged from simple dimer formation models to polymeric models and population balance models. These models have enabled detection and characterization of crystal growth by oriented aggregation using methods such as small-angle x-ray scattering, among others, in addition to transmission electron microscopy. As our fundamental understanding of oriented aggregation improves, novel and complex functional materials are expected to emerge. This article presents a summary of some recent results, methods, and models for characterizing crystal growth by oriented aggregation.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3