Nanometer Resolution Studies of Microstructural Evolution During the Heteroepitaxy of Ge on Vicinal Si(100)

Author:

Krishnamurthy Mohan,Drucker Jeff S.,Venables J. A.

Abstract

ABSTRACTWe have studied the initial stages of island formation and coarsening for epitaxial Ge on vicinal Si (100) using in-situ deposition and nanometer resolution biassed secondary electron imaging (b-SEI) in a UHV-STEM. Ge is deposited using MBE techniques on nominally flat Si(100) substrates as well as those misoriented 1° and 5° toward <110>. The temporal evolution of the islanded microstructure can be studied by analysis of computer generated island size distributions. Good statistics can be obtained for islands with radii between 2nm and lOOnm using high resolution b-SE imaging and a large magnification range. Both MBE and Solid phase MBE (SP-MBE) processes have been studied.We explain the evolution of the islanded microstructure in terms of competition for Ge adatoms among the various available sinks. For the MBE case, control of diffusion distances by varying the substrate temperature has allowed us to identify effects related to coherently strained and highly dislocated Ge islands as well as contaminant particles. In all cases, coherently strained Ge islands appear to be the weakest sinks and contaminant particles the strongest. Metastable growth of the intermediate layer during interrupted depositions at 375°C may be a direct consequence of an energy cost for incorporating adatoms into coherently strained islands. For depositions at higher temperatures, strong adatom sinks influence nucleation densities and size distributions of Ge islands by reducing the effective supersaturation. Island size distributions analyzed for the case of room temperature deposition in the early stages of coarsening also show evidence of effects due to coherently strained islands. These size distributions evolve from an initial distribution to one with increasing number of large islands while the distribution of the smaller islands (< 10nm radius) remains constant.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference10 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3