Author:
Kondo M.,Suzuki S.,Nasuno Y.,Matsuda A.
Abstract
ABSTRACTWe have developed a plasma enhanced chemical vapor deposition (PECVD) technique for high-rate growth of µc-Si:H at low temperatures using hydrogen diluted monosilane source gas under high-pressure depletion conditions. It was found that material qualities deteriorate, e.g. crystallinity decreases and defect density increases with increasing growth rate mainly due to ion damage from the plasma. We have found that deuterium dilution improves not only the crystallinity but also defect density as compared to hydrogen dilution and that deuterium to hydrogen ratio incorporated in the film has a good correlation with crystallinity. The advantages of the deuterium dilution are ascribed to lower ion bombardment due to slower ambipolar diffusion of deuterium ion from the plasma. Further improvement of material quality has been achieved using a triode technique where a mesh electrode inserted between cathode and anode electrodes prevents from ion bombardment. In combination with a shower head cathode, the triode technique remarkably improves the crystallinity as well as defect density at a high growth rate. As a consequence, we have succeeded to obtain much better crystallinity and uniformity at 5.8 nm/s with a defect density of 2.6×1016cm−3. We also discuss the limiting factors of growth rate and material quality for µc-Si solar cells.
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献