Compressive properties of silicone Bouligand structures

Author:

Van Meerbeek I. M.ORCID,Lenhardt J. M.,Small W.,Bryson T. M.,Duoss E. B.,Weisgraber T. H.

Abstract

Abstract This article presents an examination of silicone, Bouligand lattices in compression. Appearing frequently in biological organisms and manufacturing design, Bouligand structures comprise layers of parallel strands or fibers oriented in a helical fashion. They can exhibit exceptional fracture resistance when composed of rigid or composite materials. The behavior of elastomeric Bouligand structures, however, is less well understood. Additively manufactured (AM) elastomeric lattices have applications in stress mitigation, medical devices, and soft robotics. This article demonstrates that Bouligand structures are a useful addition to the design space of AM elastomers. By adjusting the layer-rotation parameters, lattice stress can increase by more than 300% without altering the porosity. Additionally, we introduce path length metrics that help explain the observed relationship between layer rotation and compression response. Impact statement Additive manufacturing (AM) continues to push the boundary of manufacturable structures and enhance the ability to robustly design for specific properties and behaviors. The more we understand the design space of a novel AM microstructure, the greater its application range. In this article, we describe the mechanical behavior of helicoidal, elastomeric lattices and introduce path length metrics to help explain their stress response. We show that these structures can exhibit a large range of mechanical behaviors in compression, making them well suited for applications such as stress mitigation and impact absorption. Additionally, the path length metrics could become useful design tools and may be applicable to a larger set of cellular structures. These findings expand our ability to rapidly design materials with highly specific and customizable properties to meet the needs of modern engineering challenges. Graphical abstract

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3