3D printed modular Bouligand dissipative structures with adjustable mechanical properties for gradient energy absorbing

Author:

Xiao Junfeng,Zhang Mengxing,Zhai FeiORCID,Wei Hongrui,Liu Sen,Wang Peng,Liu Zhiyang,Ji Zhongying,Wang Xiaolong

Abstract

Abstract Three-dimensional (3D) printing allows for the creation of complex, layered structures with precise micro and macro architectures that are not achievable through traditional methods. By designing 3D structures with geometric precision, it is possible to achieve selective regulation of mechanical properties, enabling efficient dissipation of mechanical energy. In this study, a series of modular samples inspired by the Bouligand structure were designed and produced using a direct ink writing system, along with a classical printable polydimethylsiloxane ink. By altering the angles of filaments in adjacent layers (from 30° to 90°) and the filament spacing during printing (from 0.8 mm to 2.4 mm), the mechanical properties of these modular samples can be adjusted. Compression mechanical testing revealed that the 3D printed modular Bouligand structures exhibit stress-strain responses that enable multiple adjustments of the elastic modulus from 0.06 MPa to over 0.8 MPa. The mechanical properties were adjusted more than 10 times in printed samples prepared using uniform materials. The gradient control mechanism of mechanical properties during this process was analyzed using finite element analysis. Finally, 3D printed customized modular Bouligand structures can be assembled to create an array with Bouligand structures displaying various orientations and interlayer details tailored to specific requirements. By decomposing the original Bouligand structure and then assembling the modular samples into a specialized array, this research aims to provide parameters for achieving gradient energy absorption structures through modular 3D printing.

Funder

the National Key Research and Development Program of China

The National Natural Science Foundation of China

The strategic priority research program of the Chinese Academy of Sciences

Shandong Provincial Natural Science Foundation

Western Young Scholars Foundations of the Chinese Academy of Sciences

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3