Design and Fabrication of 3D Microprocessors

Author:

Morrow Patrick,Black Bryan,Kobrinsky Mauro J,Muthukumar Sriram,Nelson Don,Park Chang-Min,Webb Clair

Abstract

ABSTRACTStacking multiple device strata can improve system performance of a microprocessor (μP) by reducing interconnect length. This enables latency improvement, power reduction, and improved memory bandwidth. In this paper we review some of our recent design analysis and process results which quantitatively show the benefits of stacking applied to μPs.We report on two applications for stacking which take advantage of reduced wire length- “logic+logic” stacking and “logic+memory” stacking. In addition to optimizing minimum wire length, we considered carefully the thermal ramifications of the new designs. For the logic+memory application, we considered the case of reducing off-die wiring by stacking a DRAM cache (32 to 64MB) onto a high performance μP. Simulations showed 3x reduced off-die bandwidth, Cycles Per Memory Access (CPMA) reduction of 13%, and a 66% average bus power reduction. For logic+logic applications, we considered a high performance μP where the unit blocks were repartitioned into two strata. For this case, simulations showed that stacking can simultaneously reduce power by 15% while increasing performance by 15% with a minor 14° C increase in peak temperature compared to the planar design. Using voltage scaling, this translates to 34% power reduction and 8% performance improvement with no temperature increase. We found that these results can be further improved by a secondary splitting of the individual blocks. As an example, we split a 32KB first level data cache resulting in 25% power reduction, 10% latency reduction, and 20% area reduction.We also discuss the fabrication of stacked structures with two complimentary process flows. In one case, we developed a 300mm wafer stacking process using Cu-Cu bonding, wafer thinning, and through-silicon vias (TSVs). This technology provides reliable bonding with non-detectable bonding-interface resistance and inter-strata via pitch below 8μm. We investigated the impact of this wafer stacking process to the transistor and interconnect layers built using a 65nm strained-Si/Cu-Low-K process technology and found no impact to either discrete N- and P-MOS devices or to thin 4Mb SRAMs. We verified fully functional SRAMs on thinned wafers with thicknesses down to 5μm. Although wafer stacking leads itself well to tight-pitch same-die-size stacking, die stacking enables integration of different size dies and includes opportunity to improve yield by stacking known good dies. We demonstrated a die stack process flow with 75μm thinned die, TSV, and inter-strata via pitch below 100μm. We also found negligible impact to transistors using this process flow. Multiple stacks of up to seven 75μm thin dies with TSVs were fabricated and tested. Prospects for high volume integration of 3D into μPs are discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference17 articles.

1. 2. Annavaram Murali , et al., “Die Stacking (3D) Microarchitecture”, To Appear in Proc. of the 39th Annual International Symposium on Microarchitecture, December 2006.

2. Grinding induced subsurface cracks in silicon wafers

3. 17. Kumar M. , et. al., “A Simple and High-Performance 130 nm SO1 eDRAM Technology Using Floating-Body Pass-Gate Transistor in Trench-Capacitor Cell for System-On-AChip (SoC) Applications”, Electron Device Meeting, IEDM '03 Tech Digest, p. 17.4.–4

4. 3. Reed Paul , Yeung Gus , Black Bryan , “Design Aspects of a Microprocessor Data Cache using 3D Die Interconnect Technology”, Proc. of the ICICDT, 2005, p.15–18.

5. 14. Sandireddy S. , Jiang T. , “Advanced wafer thinning technologies to enable multichip packages”, WMED, April 2005, p. 24–27.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3