Abstract
The stability of interfaces with germanium, which has recently been discussed as a replacement for silicon in ultra-large-scale integrated circuits (ULSIs), was studied. Interfacial oxygen diffusion from high-permittivity gate dielectrics (ZrO2 and HfO2) into germanium substrates must be suppressed to prevent the formation of interfacial layers between the gate dielectrics and the germanium substrates. Oxygen diffusion was simulated through a molecular-dynamics technique that takes into account many-body interactions and charge transfer between different elements. The simulation results show that the addition of yttrium is effective in suppressing interfacial oxygen diffusion at the ZrO2/germanium interfaces. On the other hand, the addition of yttrium is not effective in suppressing interfacial oxygen diffusion at the HfO2/germanium interfaces. The results also show that the diffusion at the ZrO2/Ge(111) and HfO2/Ge(111) interfaces is much more suppressed than the diffusion at the ZrO2/Ge(001) and HfO2/Ge(001) interfaces.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献