Author:
Kessels W.M.M.,Aarts I.M.P.,Gielis J.J.H.,Hoefnagels J.P.M.,van de Sanden M.C.M.
Abstract
AbstractThis paper describes two novel optical diagnostics that were recently introduced to the field of Si-based thin films, in particular for probing defect states present in the bulk and at the surface of a-Si:H films. It is expected that these diagnostics, when applied in situ or real time during film growth, can provide new insights into the a-Si:H film properties as well as into the fundamental surface processes during growth. The first method is cavity ringdown spectroscopy (CRDS). From ex situ measurements on a-Si:H thin films, it is shown that this method is very powerful for measuring absolute defect-related absorptions at subgap energies without the need for a calibration procedure, even for films as thin as 4 nm. It is also shown that the method can be used for measuring rare-earth dopants – here Er3+ in silicon-rich oxide – to the extent that issues about absorption cross-sections can be resolved by using thin samples instead of waveguides. Furthermore, the in situ application of the method for thin films is discussed by presenting the evanescent-wave cavity ringdown (EW-CRDS) technique. The second method is spectroscopic second harmonic generation (SHG). It has been found that this non-linear optical technique yields a photon energy dependent signal for as-deposited a-Si:H films and that this signal has a contribution from a-Si:H surface states. From a comparison with c-Si surface science studies, the possible origin of the signal from surface Si dangling bonds and strained Si-Si bonds is discussed. The application of SHG during real-time film growth is also presented.
Publisher
Springer Science and Business Media LLC