Novel in situ and real-time optical probes to detect (surface) defect states of a-Si:H

Author:

Kessels W.M.M.,Aarts I.M.P.,Gielis J.J.H.,Hoefnagels J.P.M.,van de Sanden M.C.M.

Abstract

AbstractThis paper describes two novel optical diagnostics that were recently introduced to the field of Si-based thin films, in particular for probing defect states present in the bulk and at the surface of a-Si:H films. It is expected that these diagnostics, when applied in situ or real time during film growth, can provide new insights into the a-Si:H film properties as well as into the fundamental surface processes during growth. The first method is cavity ringdown spectroscopy (CRDS). From ex situ measurements on a-Si:H thin films, it is shown that this method is very powerful for measuring absolute defect-related absorptions at subgap energies without the need for a calibration procedure, even for films as thin as 4 nm. It is also shown that the method can be used for measuring rare-earth dopants – here Er3+ in silicon-rich oxide – to the extent that issues about absorption cross-sections can be resolved by using thin samples instead of waveguides. Furthermore, the in situ application of the method for thin films is discussed by presenting the evanescent-wave cavity ringdown (EW-CRDS) technique. The second method is spectroscopic second harmonic generation (SHG). It has been found that this non-linear optical technique yields a photon energy dependent signal for as-deposited a-Si:H films and that this signal has a contribution from a-Si:H surface states. From a comparison with c-Si surface science studies, the possible origin of the signal from surface Si dangling bonds and strained Si-Si bonds is discussed. The application of SHG during real-time film growth is also presented.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3