Author:
Wanka H. N.,Zedlitz R.,Heintze M.,Schubert M. B.
Abstract
AbstractThe growth of amorphous (a-Si:H) and microcrystalline (pc-Si) silicon by hot-wire chemical vapor deposition (HWCVD) has been studied by combining in-situ ellipsometry, atomic force microscopy (AFM), and Raman spectroscopy. Generally a dense nucleation layer is formed during a-Si:H HWCVD, containing nuclei about 0.8 nm high and 10 to 20 nm in diameter. The surface roughness gradually increases with film thickness and settles at a root mean square (RMS) value of 1.6 nm at about 200 nm thickness. For hydrogen dilution at gas flow ratios x=[H2]/[SiH4] of 15 to 120 microcrystalline material was obtained. The grain size and nucleation layer, however, are strongly dependent on x. Low H2 dilution enhances the formation of an amorphous-like interface layer from which the μc-Si:H growth eventually starts. Increasing x promotes the etching of amorphous regions and the surface diffusion of precursors, resulting in larger nuclei. X = 30 yields extended μc-Si nuclei (30 nm height, 90 nm diameter) and a pronounced increase in surface roughness for thicker films, but suppresses the formation of the amorphous-like nucleation layer. A further increase in x remarkably lowers the growth rate, but smoother surfaces at comparable film thickness and larger lateral dimensions of the grains occur. This is interpreted as incipient etching of the crystallites.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献