Manipulation and Control of Nucleation and Growth Kinetics with Hydrogen Dilution in Hot-Wire CVD Growth of Poly-Si

Author:

Swiatek Maribeth,Holt Jason K.,Goodwin David G.,Atwater Harry A.

Abstract

ABSTRACTWe systematically explore the relationship between gas-phase kinetics and film microstructure in the hot-wire CVD technique using diluted silane (1% in He) and additional hydrogen. Using a wire temperature of 2000°C, films were grown on Si (100) at 300°C using 1 mTorr SiH4 and 99 mTorr He at hydrogen pressures from 0-100 mTorr. Transmission electron microscopy and atomic force microscopy measurements indicated that continuous microcrystalline films had a columnar grain structure and that grain size increased from 40 nm using SiH4/He to 85 nm using SiH4/He/H2 with 20:1 H2:SiH4 ratio due to the etching of silicon by hydrogen. Etching rate measurements using a quartz deposition monitor show that, under the current deposition conditions, a transition from net film growth (0.17 nm/s using only SiH4) to net etching occurs at a H2:SiH4 ration of 80:1. The effect of atomic H on the nucleation density during the initial stages of growth has also been investigated, revealing a sublinear dependence of nucleation density with time and a decrease in nucleation density with increasing H2 dilution. High deposition rate growth with no H2 dilution has been achieved on a low-density array of seed nuclei produced using high H2 dilution.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3