Tem Analysis of Interfacial Reactions Between TiWn, Wn Gate Metallizations and GaAs in Mesfet Devices

Author:

Jones K.S.,Robinson H.G.,Jasper C.,Cronin W.,Durlam M.

Abstract

AbstractIn an effort to improve the uniformity of the threshold voltage, the Schottky barrier height, and the ideality factor, Ti0.29W0.52N0.19 and W0.81N0.19 gate metal depositions have been investigated as a function of annealing conditions for GaAs based MESFET devices. Crosssectional TEM samples were made of each device. The results of these studies indicate there is a systematic and significant reaction occurring between the gate metal and the GaAs upon 850°C and 900°C rapid thermal annealing. These reactions take different forms depending on whether Ti is present or not. If Ti is absent (i.e. WN gates) then the interfacial roughness between the gate and the GaAs is less than 30Å indicating the metallization is very unreactive. The WN contacts for some gates show void formation indicative of GaAs decomposition also for some devices an amorphous layer is observed at the interface. Selected area diffraction patterns indicate only the alpha-W and beta-W2N phases are present. For the TiWN gates the interface roughness is as large as 200Å upon 900°C 10 second RTA. However no voids or interfacial amorphous layers were observed. Again only alpha-W and beta-W2N were observed in the bulk of the gates. For both systems, beta-W2N appears to form at the interface however the morphology of the beta-W2N grains are much larger for the TiWN gates. Electrical results indicate the TiWN gates have a lower ideality factor (near 1.1) and greater uniformity across the wafer compared to the WN gates. It is proposed that the presence of Ti in the gate metal aids in reducing any surface oxides thus improving the ideality and uniformity of the gate metal/GaAs contact.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3