Author:
Ramasubramaniam Ashwin,Carter Emily A.
Abstract
AbstractThe interface of quantum mechanics methods with classical atomistic simulation techniques, such as molecular dynamics and Monte Carlo, continues to be an area of considerable promise and interest. Such coupled quantum–atomistic approaches have been developed and employed, for example, to gain a comprehensive understanding of the energetics, kinetics, and dynamics of chemical processes involving surfaces and interfaces of hard materials. More recently, it has become possible to directly couple first-principles electronic structure techniques to continuum solid mechanics, either on the fly with feedback between length scales or by information passing between length scales. We discuss, with tutorial examples, the merging of quantum mechanics with molecular dynamics and Monte Carlo simulations, as well as quantum–continuum coupled techniques. We illustrate the opportunities offered by incorporation of information from quantum mechanics (reducing assumptions in higher length-scale models) and outline the challenges associated with achieving full predictive capability for the behavior of materials.
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献