Growth Morphology of InN Thin Films by Scanning Tunneling and Atomic Force Microscopies and X-Ray Scattering

Author:

Bryden Wayne A.,Hawley Marilyn E.,Ecelberger Scott A.,Kistenmacher Thomas J.

Abstract

AbsiractThe evolution of the growth morphology of thin films of InN on (00.1) sapphire and on (00.1) sapphire prenudeated by a layer of AIN have been followed as a function of the thickness of the InN overlayer. The InN thin films and the AIN nucleation layers were deposited by reactive magnetron sputtering and first characterized by X-ray scattering, profilometry, and electrical transport. These AIN-nucleated InN films displayed heteroepitaxial grains, and high Hall mobility -even in the limit of InN overlayer on the order of 20-40Å. In parallel, InN films of varying thickness were grown directly onto (00.1) sapphire. These films showed a mixture of textured and heteroepitaxial grains, and lower Hall mobility. Atomic force and scanning tunneling microscopy studies have focussed on the morphology of the InN films with thicknesses: (a) much smaller than the AIN nucleation layer; and, (b) near the morphological transition that occurs at ∼1μm and has been attributed to the crossover from a 2D to a 3D growth mechanism. Additional correlations of X-ray structural coherence with growth mode are also examined.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3