Abstract
Friction stir processing (FSP) has been developed as a potential grain refinement technique. In the current study, a commercial 5083 Al alloy was friction stir processed with three combinations of FSP parameters. Fine-grained microstructures with average grain sizes of 3.5–8.5 μm were obtained. Tensile tests revealed that the maximum ductility of 590 was achieved at a strain rate of 3 × 10−3 s−1 and 530 °C in the 6.5-μm grain size FSP material, whereas for the material with 8.5-μm grain size, maximum ductility of 575 was achieved at a strain rate of 3 × 10−4 s−1 and490 °C. The deformation mechanisms for both the materials were grain boundary sliding (m ∼0.5) However, the 3.5-μm grain size material showed maximum ductility of 315 at 10−2 s−1 and 430 °C. The flow mechanism was solute-drag dislocation glide (m ∼0.33) This study indicated that establishing a processing window is crucial for obtaining optimized microstructure for optimum superplasticity.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献