Development of Al-Mg2Si Alloy Hybrid Surface Composites by Friction Stir Processing: Mechanical, Wear, and Microstructure Evaluation

Author:

Raja R.1,Shanmugam Ragavanantham2ORCID,Jannet Sabitha1,Kumar G. B. Veeresh3ORCID,Venkateshwaran N.4,Naresh K.5ORCID,Ramoni Monsuru2ORCID

Affiliation:

1. Department of Mechanical Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India

2. School of Engineering, Math and Technology, Navajo Technical University, Crown Point, NM 87313, USA

3. Department of Mechanical Engineering, National Institute of Technology-Andhra Pradesh, Tadepalligudem 534101, India

4. Department of Mechanical Engineering, Rajalakshmi Engineering College, Chennai 600125, India

5. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA

Abstract

Surface composites are viable choices for various applications in the aerospace and automotive industries. Friction Stir Processing (FSP) is a promising method for fabricating surface composites. Aluminum Hybrid Surface Composites (AHSC) are fabricated using the FSP to strengthen a hybrid mixture prepared with equal parts of Boron carbide (B4C), Silicon Carbide (SiC), and Calcium Carbonate (CaCO3) particles. Different hybrid reinforcement weight percentages (reinforcement content of 5% (T1), 10% (T2), and 15% (T3)) were used in fabricating AHSC samples. Furthermore, different mechanical tests were performed on hybrid surface composite samples with different weight percentages of the reinforcements. Dry sliding wear assessments were performed in standard pin-on-disc apparatus as per ASTM G99 guidelines to estimate wear rates. The presence of reinforcement contents and dislocation behavior was investigated using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies. The results indicated that the Ultimate Tensile Strength (UTS) of sample T3 exhibited 62.63% and 15.17% higher than that of samples T1 and T2, respectively, while the Elongation (%) of T3 exhibited 38.46% and 15.38% lower than that of samples T1 and T2, respectively. Moreover, it was found that the hardness of sample T3 increased in the stir zone compared to samples T1 and T2, owing to its higher brittle response. The higher brittle response of sample T3 compared to samples T1 and T2 was confirmed by the higher value of Young’s modulus and the lower value of Elongation (%).

Funder

Navajo Technical University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3