Role of nitrogen on the atomistic structure of the intergranular film in silicon nitride: A molecular dynamics study

Author:

Su Xiaotao,Garofalini Stephen H.

Abstract

Molecular dynamics simulations of intergranular films (IGFs) containing Si, O, N, and Ca in contact with three different types of surface terminations of Si3N4 were performed using a multi-body interatomic potential. IGFs with the same Ca concentration (12 mol% CaO) but different nitrogen concentrations [N/(N + O) = 0, 15, 30, and 50%] were studied. In all 12 IGFs, Ca ions did not compete with the first adsorbed layer of Si at the IGF/basal crystal interface, but did so at the IGF/prism crystal interface. The simulations show the epitaxial adsorption of Si, O, and N from the IGF onto the basal and prism crystal surfaces. While more adsorbed N was expected as nitrogen concentration increases, there was a significantly larger amount of N adsorbed to the basal surface than to the prism surface. It was found that Ca ions sit closer to the prism surface than the basal surface but move closer to the crystal at both surfaces with increasing nitrogen concentration, although the effect was more pronounced at the basal interface. With the increase of nitrogen concentration, the percentage of two-coordinated oxygen remained about the same, but there was a change in the type of defect oxygen present. In all the simulations, the central position of the first peak in the Si–O pair distribution fixation (PDF) ranges from 1.63 to 1.65 Å, and that of Si–N PDF ranges from 1.71 to 1.73 Å, both consistent with experimental findings. Furthermore, the first peak of both the Si–O and Si-N PDF shifts to larger values as the nitrogen concentration increases, indicating the elongation of the Si–O and Si–N bond in the IGF with the increase of nitrogen concentration. Elongation of both the Si–N and Si–O bonds could lead to weakening of the IGF as nitrogen concentration increases, although competing changes in bonding of the O complicate the effect of N addition on the strength of the IGF.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3