Author:
Liu Shaojun,Sun Jian,Taylor Richard,Smith David J.,Newman N.
Abstract
The use of boron as a sintering aid reduces the sintering temperature, enhances the sintering density, and improves the microwave properties of Ba(Cd1/3Ta2/3)O3 ceramic dielectrics. Observations by transmission electron microscopy indicate that the liquid sintering mechanism contributes to the improvement in sintering density for boron concentrations exceeding 0.5 wt%. The introduction of as small as 0.01% boron also results in the production of high-density samples (∼95%), presumably indicating that a point defect mechanism may also play an important role in the sintering process. X-ray diffraction data combined with high-resolution transmission electron microscopy images show that boron-doped Ba(Cd1/3Ta2/3)O3 ceramic material has a well-ordered hexagonal structure. Annealing treatment is found to improve the microwave properties. The best sample has a dielectric constant of 32, a temperature coefficient of resonant frequency of 80 ± 15 ppm/°C, and a quality factor of >25,000 at 2 GHz.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献