Materials Challenges and Alternatives for Advanced Photolithographic Patterning: From 193 to 157 nm and Beyond

Author:

Reichmanis Elsa,Nalamasu Omkaram,Houlihan Francis M.

Abstract

AbstractIn the last decade, major advances in fabricating electronic devices have placed increasing demands on microlithography, the technology used to generate today's integrated circuits. Within the next few years, a new form of lithography will be required that routinely produces features of less than 0.1 μ. As the exposing wavelength of light decreases to facilitate higher resolution imaging, the opacity of traditional materials precludes their use; and major research efforts to develop alternate materials are underway. Through understanding of materials structure and its relationship to device process requirements and performance, cycloolefin based polymers provide for sub-0.1 μm imaging capability using 193 nm exposure. Alicyclic monomers such as norbornene are readily copolymerized with other units to afford a wide range of alternative matrices that exhibit transparency at the exposing wavelength and aqueous base solubility. Further reduction in imaging wavelength necessitates renewed research to define alternative materials platforms. Materials transparency is the key issue to be addressed for 157 nm or EUV lithography. Novel polymer architectures including fluorinated polymers will be required to effect sufficient transparency coupled with requisite solubility, sensitivity, contrast etching resistance, shelf life and purity. Each of these issues will be discussed from the perspective of polymer materials chemistry.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3