Sintering of screen-printed platinum thick films for electrode applications

Author:

Véchembre J. B.,Fox G. R.

Abstract

Pt electrodes with a 6–8-μm thickness were produced on alumina substrates by a double-print Pt screen-printing process that included a sequential heat treatment at 600 °C and 1300 °C. This process improved the final sintered double-print film because the first printed layer acted as a sintering template for the second printed layer. The sintered Pt films have a 95% coverage of the alumina surface, 92% density, 0.73-μm average surface roughness, and 16.10−5 Ω cm resistivity. The sintering behavior of Pt films exhibited three stages of densification: Stage I (T °C < 700 °C), exhibiting neck growth, and Stage II (700 < T °C < 1300 °C), exhibiting grain growth, have activation energies of 64 kJ/mol and 125 kJ/mol, respectively. Stage III exhibits a decrease in shrinkage due to Pt coalescence and island formation. The transition temperature, 700 °C, between Stages I and II corresponds to an anomalous increase in surface roughness and resistivity. The thickness of Pt films was a critical parameter for achieving alumina surface coverage. Uniaxial pressing of dried Pt films increased densification and reduced the surface roughness of double-print Pt films.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3