Abstract
The structure and dielectric properties of Bi2O3–ZnO–Nb2O5-based ceramics with pyrochlore–fluorite biphase structure were investigated. Mixed-sintered ceramics were prepared by two precalcined constituents in the system of x[Bi1.5Zn0.5(Zn0.5Nb1.5)O7]−(1 − x)Bi3/4Nb1/4O7/4 (0.05 ≤ x ≤ 0.35), where Bi1.5Zn0.5(Zn0.5Nb1.5)O7 is a cubic pyrochlore (α) and Bi3/4Nb1/4O7/4 is a defect cubic fluorite (F). The phase composition of the mixed-sintered ceramics were characterized as a biphasic structure with a distorted pyrochlore (β) and a fluorite (F) coexisting. The phase ratio of β pyrochlore and F fluorite is related to the chemical composition x. The dielectric properties of the ceramics gradually change with their structure.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献