Torsion and bending of micron-scaled structures

Author:

Chong A. C. M.,Yang F.,Lam D. C. C.,Tong P.

Abstract

Typical microelectromechanical systems (MEMS) devices and packages are composed of micron-scaled structures. Experimental investigations on the effect of size on the deformation behavior of simple structures have shown that the deformation behavior of metals and polymers is size dependent. The size dependence in small structures is attributed to the contribution of nonnegligible strain gradients. In this work, torsion and bending of micron-sized rods and plates were analyzed by using a two-parameter model of strain-gradient plasticity. Microrod torsion and microplate bending experimental data were analyzed to determine the magnitude of the strain-gradient material parameters. The parametric analyses showed that conventional analysis is applicable only when the size of the structure is significantly larger than the material parameters, which are typically in the micron range. Strain-gradient analysis of micron-sized rod revealed that the presence of strain gradient increased the torque by three to nine times at the same twist. For MEMS structures with micron-sized features, conventional structural analysis without strain gradient is potentially inadequate, and strain-gradient analysis must be conducted to determine the elastoplastic behavior in the micron scale.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 173 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3