Author:
Koh Joohyun,Fujiwara H.,Koval R. J.,Wronski C. R.,Collins R. W.,Claflin B.,Lucovsky G.
Abstract
ABSTRACTReal time spectroscopic ellipsometry (RTSE) has been applied to identify optimal conditions for the nucleation and growth of 120 Å microcrystalline silicon (μc-Si:H) p-layers by rf plasma-enhanced chemical vapor deposition (PECVD) at 200°C on amorphous silicon (a-Si:H) i-layers in the n-i-p solar cell configuration. Analysis of the RTSE data provide the bulk p-layer dielectric function (2.5-4.3 eV), whose amplitude and shape yield insights into the structural quality and crystallinity of the p-layer. Among the deposition parameters varied include the underlying i-layer surface treatment, the p-layer plasma power flux, and the p-layer dopant source gas and flow ratio. Here we focus on the differences between p-layer deposition using trimethyl boron, B(CH3)3, and boron trifluoride, BF3, source gases. We find significant differences attributed to the differing effects of F and CH3radicals in the plasma on silicon crystallite growth.
Publisher
Springer Science and Business Media LLC