Author:
van Veen A.,Schut H.,Rivera A.,Fedorov A.V.
Abstract
AbstractAnnealing experiments of deuterium implanted silicon have been performed while positron beam analysis was used for monitoring the cavity growth. The experiments indicate up to annealing temperature 500° C similar defect evolution for both the low dose of 1016 cm-2 as for a 3 times higher dose. At this temperature the deuterium stabilized vacancy clusters dissociate and only in the case of the high dose micro-cavities are formed. Monte Carlo simulations of vacancy cluster growth in silicon based on vacancy cluster dissociation energies, calculated with the Stillinger Weber potential, have been performed. The results indicate that for low initial defect concentrations vacancy clusters might be hindered to grow because the vacancy binding energy of the clusters does not increase monotonically with the cluster size. Only a high concentration guarantees that growth barriers will be overcome.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Annealing behaviour of defects in helium implanted MgO;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;1999-01
2. Formation and Binding Energies of Vacancy Clusters in Silicon;MRS Proceedings;1997