Composition and structure of Si–Ge layers produced by ion implantation and laser melting

Author:

Berti M.,Mazzi G.,Calcagnile L.,Drigo A.V.,Merli P.G.,Migliori A.

Abstract

Si samples (001) oriented have been implanted with 101774Ge/cm2 (17.7 at. % maximum Ge concentration) and then pulse annealed with either ruby or excimer (XeCl) lasers in the energy density range from 0.1 to 1.5 J/cm2. Compositional and structural characterization has been performed showing that for both laser wavelengths the final product of the annealing process is a single crystal characterized by a surface layer about 150 nm thick whose composition is Si0.9Ge0.1. While after ruby laser irradiations defects are present even in the fully recrystallized samples, after XeCl irradiations good strained layers in epitaxy to the underlying silicon crystals and free from misfit dislocations are produced. Structural characterization of the regrown films indicates that the governing factor for the recovery of the crystalline quality and for the “building up of strain” is the state of the implantation “end-of-range defect” layer. When this defected layer is not melted, textured columnar grains are formed. Upon melting of the end-of-range defect layer, a single crystal epitaxial layer under compressive strain is formed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3