Abstract
Chemical vapor deposition (CVD) of titanium oxide films has been performed for the first time under ultra-high vacuum (UHV) conditions. The films were deposited through the pyrolysis reaction of titanium isopropoxide, Ti(OPri)4, and in situ characterized by x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). A small amount of C incorporation was observed during the initial stages of deposition, through the interaction of precursor molecules with the bare Si substrate. Subsequent deposition produces pure and stoichiometric TiO2 films. Si–O bond formation was detected in the film-substrate interface. Deposition rate was found to increase with the substrate temperature. Ultra-high vacuum chemical vapor deposition (UHV-CVD) is especially useful to study the initial stages of the CVD processes, to prepare ultra-thin films, and to investigate the composition of deposited films without the interference from ambient impurities.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献