Abstract
Cobalt disilicide CoSi2 of a specific resistivity of 23 μω was formed by the solid phase reaction of cobalt and silicon in the phase sequence of Co2Si, CoSi, and CoSi2 by use of rapid thermal annealing. The through-metal arsenic implantation caused the mixing of cobalt with the silicon substrate and the formation of cobalt silicides. A significant lateral growth of cobalt silicides was observed in samples subjected to one-step rapid thermal annealing process at 900 °C without through-metal ion implantation. Ion beam mixing reduced this lateral silicide growth efficiently, but resulted in a higher density of cobalt atoms remaining in the silicon oxide film than after rapid thermal annealing, as revealed by vapor phase decomposition atomic absorption spectroscopy.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献