TEM Observation of Microstructural Change of Silicon Single Crystal Caused by Scratching Tests Using SPM

Author:

Takagi M.,Onodera K.,Iwata H.,Imura T.,Sasaki K.,Saka H.

Abstract

ABSTRACTIn this study, the microstructural change of the surface of Si single crystal (Si(100)) after the scratching tests under very small loading forces was investigated. At first, line-scratching tests and scanning-scratching tests were carried out using an atomic force/friction force microscope (AFM/FFM). Next, cross-sectional TEM observations of the wear marks which were generated by the scratching tests were carried out. As a result of the TEM observations after the line-scratching tests, it was found that dislocations were observed in the area of less than 100nm thickness from the surface of the wear marks which were formed under the loading forces of more than 5μN. In the case of the loading forces of more than 20μN, an amorphous region was also observed just under the wear marks. As a result of the TEM observations after the scanning-scratching tests, it was found that the introduction of dislocations took place and no amorphous region appeared. It was also found that the several atomic layers at the top surface of the wear marks shifted in parallel to (100).

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3