Hot-electron Phototransistors in Hydrogenated Amorphous Silicon

Author:

Shannon J. M.,Gerstner E. G.

Abstract

ABSTRACTIt has been shown that useful current gains can be obtained in hot-electron device structures containing very thin chromium disilicide layers of nanometer dimensions in hydrogenated amorphous silicon [1]. The a-Si:H/a-CrSi2/a-Si:H device structure made using PECVD and sputtering techniques naturally forms a hot-electron transistor device where the electrons are emitted across a high potential barrier on one side of the silicide and are collected over a low barrier on the other. Recent results [2] have shown that current gains can be in excess of 40 in structures having a-CrSi2 bases ∼1 nm thick.Here we outline the relatively simple technology used to make these devices and examine their performance as phototransistors in which the photo-current is amplified by hot-electron transistor action. The speed of response can be maximised by operating the phototransistor with high electric field across the collector since it is the transit time of the photo-induced carriers that determines the response time. We show that these devices provide a useful new active element for large area amorphous silicon electronics.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3