Author:
Bjorkman C. H.,Nishimura H.,Yamazaki T.,Alay J. L.,Fukuda M.,Hirose M.
Abstract
ABSTRACTSurface contamination and chemical stability of hydrogen terminated Si(100) surfaces have been studied using Fourier Transform Infrared Attenuated Total Reflection (FT-IR-ATR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). Hydrogen terminated Si(100) is obtained by removing the chemical oxide, formed in a low-concentration-NH4OH SC1 clean, in various HF based solutions. Using standard cleaning and loading conditions, we find a direct correlation between surface roughness and the amount of adsorbed C contamination. Oxidation during water rinsing and wafer loading observed by both FT-IR-ATR and XPS indicates that dihydride terminated silicon atoms are preferentially oxidized. Optimizing the water rinse and wafer loading conditions reduces total atomic concentration of C, O, and F surface contamination from 20–30 at.% to less than 6 at.%. These clean surfaces enable XPS-identification of the Si-Hx components of the Si 2p core-level spectra as well as estimation of the relative surface concentration of Si-Hx and contamination species.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献