Phase formation during reactive molybdenum-silicide formation

Author:

Doland C. M.,Nemanich R. J.

Abstract

Silicide formation due to thermal treatment of thin (5–10 nm) molybdenum films on single-crystal, polycrystalline, and hydrogenated amorphous silicon substrates in the temperature range of 100 to 1000 °C was studied, with an emphasis on the initial interactions. The molybdenum deposition, annealing, and characterization using Raman scattering and Auger electron spectroscopy was carried out in UHV in order to minimize the effects of contaminants. Raman spectroscopy is used to distinguish between tetragonal (t-MoSi2) and hexagonal MoSi2 (h-MoSi2). The Raman spectrum of bulk tetragonal MoSi2 exhibits two prominent lines which are associated with the A1g (325 cm−1) and Eg (440 cm−1) modes. The only silicide phases detected in the thin film experiments were t-MoSi2 and h-MoSi2. While hexagonal MoSi2 does not appear in the bulk phase diagram, it is the first silicide phase formed in thin film reactions at a temperature between 300 and 400 °C. The nucleation temperature of h-MoSi2 was the same for Si〈100〉, Si〈111〉, and amorphous Si. Indirect evidence for disordered intermixing of silicon and molybdenum before nucleation of h-MoSi2 is found. Annealing at approximately 800 °C causes the silicide to transform from the hexagonal phase to the tetragonal phase for all substrates. Contaminants interfere with the formation of h-MoSi2 and also retard the transformation of h-MoSi2 to t-MoSi2. For the thin films considered here, the transformation to t-MoSi2 is accompanied by islanding of the silicide film. A lower interfacial energy between the silicon and silicide for h-MoSi2 has been proposed to explain the nucleation of h-MoSi2 before t-MoSi2.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3