Plasma Etching of Silicon Dioxide and Silicon Nitride with Non-Perfluorocompound Chemistries: Trifluoroacetic Anhydride and Iodofluorocarbons

Author:

Karecki Simon M.,Pruette Laura C.,Reif L. Rafael

Abstract

AbstractPresently, the semiconductor industry relies almost exclusively on perfluorocompounds (e.g., tetrafluoromethane, hexafluoroethane, nitrogen trifluoride. sulfur hexafluoride, and. more recently, octafluoropropane) for the etching of silicon dioxide and silicon nitride films in wafer patterning and PECVD (plasma enhanced chemical vapor deposition) chamber cleaning applications. The use of perfluorocompounds (PFCs) by the industry is considered problematic because of the high global warming potentials (GWPs) associated with these substances. Potential replacements for perfluorocompounds are presently being evaluated at MIT. In an initial stage of the study, intended to screen potential candidates on the basis of etch performance, a large number of compounds is being tested in a commercially available magnetically enhanced reactive ion etch tool. The potential alternatives discussed in this work are trifluoroacetic anhydride (TFAA) and three members of the iodofluorocarbon (IFC) family – iodotrifluoromethane, iodopentafluorocthane, and 2-iodoheptafluoropropane. This paper will present the results of etch rate comparisons between TFAA and octafluoropropane, a perfluorinated dielectric etchant. Designed experiment (DOE) methodology, combined with neural network software, was used to study a broad parameter space of reactor conditions. The effects of pressure, magnetic field, and gas flow rates were studied. Additionally, more limited tests were carried out with the three iodofluorocarbon gases. Etch rate data, as well as Auger electron spectroscopy data from substrates exposed to IFC plasmas will be presented. All gases were evaluated using both silicon dioxide as well as silicon nitride substrates. Results indicate that these compounds may be potentially viable in plasma etching applications.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference8 articles.

1. 8 1000-IS Full Wafer Imaging Interferometer – Manual, Low Entropy Systems, Inc., Boston, MA (1995).

2. 6 Intergovernmental Panel on Climate Change (IPCC), Radiative Forcing of Climate Change – The 1994 Working Report of the Scientific Assessment Working Group of IPCC (1994).

3. Ozone depletion and global warming potentials of CF3I

4. 4 Soggs S. , Bryant B. , Boeck B. A. , Rogers S. , Vrtis R. . Mendicino L. , Proceedings of SEMICON Southwest 1996: A Partnership for PFC Emissions Reduction, 71 (1996).

5. 3 Karecki S. M. , Tao B. A. , Reif L. R. , submitted to SRC Techcon 1996 Conference, Phoenix, AZ, September, 1996 (publication pending).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3