Oxidation Products in Inconel Alloys 600 and 690 Under Hydrogenated Steam Environments and Their Role in Stress Corrosion Cracking

Author:

Lopez Hugo F.

Abstract

AbstractThermodynamic considerations for the stability of Ni and Cr compounds developed under PWR environments (PH2O and PH2) are experimentally tested. In particular, the experimental outcome indicates that Ni(OH)2 and CrOOH are thermodynamically stable products under actual PWR conditions (T < 360°C and Pressures of up to 20 MPa). Accordingly, a mechanism is proposed to explain crack initiation and growth in inconel alloy 600 along the gbs. The mechanism is based on the existing thermodynamic potential for the transformation of a protective NiO surface layer into an amorphous non-protective Ni(OH)2 gel. This gel is also expected to form along the gbs by exposing the gb Ni-rich regions to H2 supersaturated water steam. Crack initiation is then favored by tensile stressing of the gb regions which can easily rupture the brittle gel film. Repeating the sequence of reactions as fresh Ni is exposed to the environment is expected to also account for crack growth in Inconel alloy 600. The proposed crack initiation mechanism is not expected to occur in alloy 690 where a protective Cr2O3 film covers the metal surface. Yet, if a pre-existing crack is present in alloy 690, crack propagation would occur in the same manner as in alloy 600.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3