Hydrogen Storage in Ti-Zr Based Systems

Author:

Salmones J.,Zeifert B.,Ortega-Avilés M.,Contreras-Larios J. L.,Garibay-Febles V.

Abstract

AbstractThis research contributes to the study of hydrogen storage of two Ti-Zr based systems using (I) titanium dioxide (TiO2) + zirconium acetylacetonate (C20H28O8Zr) and (II) titanium dioxide (TiO2) + zirconium tetrachloride (ZrCl4) as starting materials. Both systems were prepared by mechanical grinding under the same conditions, with composition of 50 wt.% Ti and Zr and milling time of 2, 5, 7, 15, 30 and 70 hrs. The samples were evaluated by hydrogen absorption tests and characterized by BET, XRD and TEM. The results of hydrogen storage at different pressures but same temperature showed that samples of the system I absorbed the largest quantities of hydrogen but difficult to release them, while the system II absorbed less amount of hydrogen but completely desorbed the absorbed hydrogen. The increase of the mechanical grinding time is directly associated with changes in hydrogen absorption capacity and formation of new components. The formation of oxide nanoparticles of Ti and Zr on the surface of TiO2in samples from series II was associated with the hydrogen absorption capacity. Keywords: hydrogen storage, Ti-Zr, mechanical milling, sorption.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3