Finite Element Analysis of Thermal-Mechanical Stress Induced Failure in Interconnects

Author:

Yu X.,Weide K.

Abstract

AbstractIn this work a study of the nature as well as an evalution of the thermal-mechanical stress in aluminum interconnects was carried out. A theoretical model discribes the atom flux which can be induced by the relaxation of the stress. Based on this theory an algorithm has been developed and integrated into the finite element simulation software. This algorithm allows the calculation of the mass flux divergence and prediction of the failure location before the damage occurs. For the verification of this algorithm an aluminum pad structure sputtered on thermal oxide layer was used. The failure location was correlated with in situ observation during the long term stress tests. Experimental results confirm that the observed structure degradations correspond with the simulations very well.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference8 articles.

1. A study of the thermal-electrical- and mechanical influence on degradation in an aluminum-pad structure

2. 7. Weide K. , Yu X. , Quintard V. , Proceeding of the 7th ESREF (1995), pp. 241–246.

3. 4. Rzepka S. , Korhonen M. A. , Weber E. R. and Li C. , 1997 MRS Spring Meeting, (1997).

4. Effect of “bamboo” grain boundaries on the maximum electromigration-induced stress in microelectronic interconnect lines

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3