Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni3Al using nanoindentation

Author:

Wo P.C.,Ngan A.H.W.

Abstract

The influence of grain boundaries on material deformation in Ni3Al was investigated by relating the material pile-up at grain boundaries and the propagation of slip across grain boundaries to the misorientation between the corresponding grains. Indentation tests were carried out using micro- and nanoindentation at distances shorter than the radius of indent size from a grain boundary on Ni3Al. The indents were observed using scanning electron microscopy and non-contact-mode atomic force microscopy. Repeated experimentation did not reveal a rising trend of hardness near grain boundaries, indicating that hardness is not a sensitive parameter to measure grain boundary strengthening effects. However, it was observed that the slip transfer behavior across a grain boundary has a strong dependence on a local misorientation factor m′ relating the misorientation of slip planes and slip directions on either side of the grain boundary. This result agrees with the fundamental assumption in the physical explanation of the Hall–Petch effect.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3