The Role of Grain Boundaries in Low‐Temperature Plasticity of Olivine Revealed by Nanoindentation

Author:

Avadanii Diana1ORCID,Hansen Lars2,Marquardt Katharina3ORCID,Wallis David4ORCID,Ohl Markus5ORCID,Wilkinson Angus6ORCID

Affiliation:

1. Department of Earth Sciences University of Oxford Oxford UK

2. Department of Earth and Environmental Sciences University of Minnesota Minneapolis MN USA

3. Department of Materials Imperial College London London UK

4. Department of Earth Sciences University of Cambridge Cambridge UK

5. Department of Earth Sciences Utrecht University Utrecht The Netherlands

6. Department of Materials University of Oxford Oxford UK

Abstract

AbstractThe rheological properties of olivine influence large‐scale, long‐term deformation processes on rocky planets. Studies of the deformation of olivine at low temperatures and high stresses have emphasized the importance of a grain‐size effect impacting yield stress. Laboratory studies indicate that aggregates with finer grains are stronger than those with coarser grains. However, the specific interactions between intracrystalline defects and grain boundaries leading to this effect in olivine remain unresolved. In this study, to directly observe and quantify the mechanical properties of olivine grain boundaries, we conduct nanoindentation tests on well characterized bicrystals. Specifically, we perform room‐temperature spherical and Berkovich nanoindentation tests on a subgrain boundary (13°, [100]/(016)) and a high‐angle grain boundary (60°, [100]/(011)). These tests reveal that plasticity is easier to initiate if the high‐angle grain boundary is within the deformation volume, whereas the subgrain boundary does not impact the initiation of plasticity. Additionally, the high‐angle grain boundary acts as a barrier to slip transmission, whereas the subgrain boundary does not interact with dislocations in a measurable manner. We suggest that the distribution of grain‐boundary types in olivine‐rich rocks might play a role in generating local differences in mechanical behavior during deformation.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3