Effects of Properties and Growth Parameters of Doped and Undoped Silicon Oxide Films on Wear Behavior During Chemical Mechanical Planarization Process

Author:

Sikder A.K.,Kumar Ashok,Thagella S.,Yota Jiro

Abstract

Understanding the tribological, mechanical, and structural properties of an inorganic and organic dielectric layer in the chemical mechanical planarization (CMP) process is crucial for successful evaluation and implementation of these materials with copper metallization. Polishing behaviors of different carbon- and fluorine-doped silicon dioxide (SiO2) low dielectric constant materials in CMP process are discussed in this paper. Films were deposited using both chemical vapor deposition and spin-on method. Carbon and fluorine incorporation in the Si–O network weaken the mechanical integrity of the structure and behave differently in slurry selective to SiO2 films. Mechanical properties of the films were measured using depth-sensing nanoindentation technique, and it was found that undoped SiO2 film has the highest and spin-on carbon-doped oxide films have the lowest hardness and modulus values. Wear behavior of the doped SiO2 is studied in a typical SiO2 CMP environment, and results are analyzed and compared with those of the undoped SiO2 films. Coefficient of friction and acoustic emission signals have significant effect on the polishing behavior. Surface of the films are investigated before and after polishing using atomic force microscopy. Roughness and section analysis of the films after polishing show the variation in wear mechanism. Validation of Preston’s equation is discussed in this study. Additionally, different wear mechanisms are presented, and a two body abrasion model is proposed for the softer films.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference51 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3