Carbon-Doping as Efficient Strategy for Improving Photocatalytic Activity of Polysilicon Supported Pd in Hydrogen Evolution from Formic Acid

Author:

Al-Azmi Amal,Keshipour SajjadORCID

Abstract

Interest in cost-effective materials pushes researchers to the inexpensive and abundant semiconductors to use photons’ energy for generating electrons and holes required for photocatalytic transformations. At the same time, polysilicon is one of the economic semiconductors with a disadvantage of high bandgap which could be solved by carbon-doping. We employed this strategy to the synthesis of carbon-doped polysilicon by a new approach starting from citric acid and methyltrimethoxysilane. The nanocomposite obtained was utterly characterized, and compared with bare polysilicon; increased UV–Vis absorbance and shift to higher wavelengths were the most notable characteristics of the synthesized catalyst. The carbon-doped polysilicon was modified with Pd nanoparticles to obtain a new heterogeneous photocatalyst for the formic acid degradation. The decomposition of formic acid was photocatalyzed by the obtained nanocomposite with a hydrogen production turnover frequency of up to 690 h−1. Moreover, it was demonstrated that the catalyst is stable and recyclable.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3