Advanced β-Solidifying Titanium Aluminides – Development Status and Perspectives

Author:

Clemens Helmut,Schloffer Martin,Schwaighofer Emanuel,Werner Robert,Gaitzenauer Andrea,Rashkova Boryana,Schmoelzer Thomas,Pippan Reinhard,Mayer Svea

Abstract

ABSTRACTAfter almost three decades of intensive fundamental research and development activities intermetallic titanium aluminides based on the -TiAl phase have found applications in automotive and aircraft engine industries. The advantages of this class of innovative high-temperature materials are their low density as well as their good strength and creep properties up to 750°C. A drawback, however, is their limited ductility at room temperature, which is reflected by a low plastic strain at fracture. This behavior can be attributed to a limited dislocation movement along with microstructural inhomogeneity. Advanced TiAl alloys, such as β-solidifying TNM™ alloys, are complex multi-phase materials which can be processed by ingot or powder metallurgy as well as precision casting methods. Each production process leads to specific microstructures which can be altered and optimized by thermo-mechanical processing and/or subsequent heat-treatments. The background of these heat-treatments is at least twofold, i.e. concurrent increase of ductility at room temperature and creep strength at elevated temperature. In order to achieve this goal the knowledge of the occurring solidification processes and phase transformation sequences is essential. Therefore, thermodynamic calculations were conducted to predict phase fraction diagrams of engineering TiAl alloys. After experimental verification, these phase diagrams provided the base for the development of heat treatments to adjust balanced mechanical properties. To determine the influence of deformation and kinetic aspects, sophisticated ex- and in-situ methods have been employed to investigate the evolution of the microstructure during thermo-mechanical processing and subsequent multi-step heat-treatments. For example, in-situ high-energy X-ray diffraction was conducted to study dynamic recovery and recrystallization processes during hot-deformation tests. Summarizing all results a consistent picture regarding microstructure formation and its impact on mechanical properties in TNM alloys can be given.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference54 articles.

1. Creep behavior of TiAl alloys with enhanced high-temperature capability

2. 32. Achtermann M. , Güther V. , Klose J. , and Nicolei H.-P. , paper presented at the “4th International Workshop on Titanium Aluminides”, Nuremberg, Germany (September 14-16, 2011).

3. Technology and mechanical properties of advanced γ-TiAl based alloys

4. Titanium and Titanium Alloys

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3