Technology and mechanical properties of advanced γ-TiAl based alloys

Author:

Wallgram Wilfried1,Schmölzer Thomas2,Cha Limei23,Das Gopal4,Güther Volker5,Clemens Helmut2

Affiliation:

1. Bohler Schmiedetechnik GmbH & CoKG, Kapfenberg, Austria

2. Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Leoben, Austria

3. MCL Forschung GmbH, Leoben, Austria

4. Pratt & Whitney, East Hartford, USA

5. GfE Metalle und Materialien GmbH, Nuremberg, Germany

Abstract

Abstract The present paper summarizes our progress in establishing a novel production technology for -TiAl components to be used in advanced aircraft engines. In the beginning the main emphasis is put on the design of a -TiAl based alloy which exhibits excellent hot-workability. Then, the development of a “near conventional” hot-die forging route for this type of intermetallic material is described. Finally, the effect of two-step heat-treatments on the microstructure and the mechanical properties is discussed. Because of the small “deformation window” hot-working of -TiAl alloys is a complex and difficult task and, therefore, isothermal forming processes are favoured. In order to increase the deformation window a novel Nb and Mo containing -TiAl based alloy (TNMTM alloy) was developed, which solidifies via the β-phase and exhibits an adjustable β/B2-phase volume fraction. Due to high volume fractions of -phase at elevated temperatures the alloy can be hot-die forged under near conventional conditions, which means that conventional forging equipment with minor and inexpensive modifications can be used. Examples for the fabrication of -TiAl components employing a near conventional forging route are given. With subsequent heat-treatments balanced mechanical properties can be achieved. The results of tensile and creep tests conducted on forged and subsequently heat-treated TNMTM material are presented.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Reference53 articles.

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3