Diamond Homoepitaxy Kinetics: Growth, Etching, and the Role of Oxygen

Author:

Rawles Robin E.,D'Evelyn Mark P.

Abstract

ABSTRACTGrowth and etch rates for diamond homoepitaxy have been measured in situ using Fizeau interferometry. Experiments were conducted in a hot-filament reactor using hydrogen, methane, and oxygen feed gases at a reactor pressure of 25 torr. The substrate temperature dependence for growth on diamond(lOO) was studied for 0.5% and 1% CH4 and 0–0.44% O2. Apparent activation energies of 17 and 5 kcal/mol were determined for growth from 0.5% and 1% CH4 in hydrogen, over the ranges of 700 – 1000 °C and 800 – 1050 °C, respectively. When a minimal amount of Oxygen was added to the feedstock, the growth-rate behavior was similar for that with pure methane. With greater amounts of added oxygen, growth rates were higher than those without Oxygen at low temperatures, proceeded through a maximum, and then decreased until etching was observed at high temperatures. Similar behavior was observed for growth from 1% CH4 with and without oxygen. We also measured the temperature dependence for etching of homoepitaxial diamond films in hydrogen with 0–0.1% O2, and observed etch rates of 0.01 – 0.1 microns/hr in the range of 950 – 1150 °C. We propose that oxygen facilitates diamond growth at low temperatures by enhancing the removal of both sp2- and sp3-bonded “errors” and/or by increasing the efficiency of carbon incorporation by roughening the diamond surface, and that these etching processes become dominant at high temperatures.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference17 articles.

1. Synthesis of Diamond Thin Films by Thermal CVD Using Organic Compounds

2. 10. Pan G. , Chu C.J. , Margrave J. L. , and Hauge R. H. , submitted to Diamond Rel. Mat.

3. Growth of diamond films at low pressure using magneto-microwave plasma CVD

4. 8. Dubbeldee Harris Diamond Corp., Mt. Arlington, New Jersey, USA.

5. Towards a general concept of diamond chemical vapour deposition

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3