A Numerical Study of Stress Controlled Surface Diffusion During Epitaxial Film Growth

Author:

Chiu Cheng-Hsin,Gao Huajian

Abstract

AbstractA two-dimensional numerical simulation is performed to model the morphological evolution of a strained film growing heteroepitaxially on a substrate under simultaneous action of vapor deposition and surface diffusion. To facilitate numerical implementation, a continuum boundary layer model is proposed to account for the influence of film/substrate interface on the film growth pattern. Discussions are focused on the Stranski-Krastanow growth mode, although our model is capable of explaining Frank-van der Merwe and Volmer-Weber growth modes as well. Both first-order perturbation and numerical results are developed to demonstrate that the film surface tends to remain flat during the initial stage of growth and that surface roughening occurs once the film thickness exceeds a critical value, in consistency with experimentally observed patterns of S-K growth. Numerical results further show that, depending on the deposition rate, the surface evolution could lead to a steady state morphology, unstable cusp formation, or growing islands with flattened valleys.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3