Structural development and electronic properties of hot filament low pressure chemical vapor deposited fluorocarbon polymer films

Author:

Rastogi A.C.,Desu S.B.

Abstract

Fluorocarbon polymer films in the poly(tetrafluoroethylene) (PTFE)-like structure are formed by a low-pressure chemical vapor deposition technique using the hot filament excitation of the gaseous C3F6O precursor. The filament and substrate temperatures were found to influence the structure of the deposited films. Infrared absorption and electron spectroscopy studies reveal that a PTFE-like (CF2)2n linear molecular chain structure evolves by an adsorption driven nucleation and CF2 polymerization process in the films deposited with low (450 °C) filament and high (70 °C) substrate temperatures. The films formed at a low substrate temperature (–165 °C) show a higher concentration of CF and C–CF bond defects and shorter (CF2)2n chains. A high (8–10 at.%) oxygen concentration in the films deposited at 600 °C filament temperature is attributed to the reaction of the (CF2)2n chains with COF and peroxyradicals arising from the dissociation of CF3C(O)F and affects the thermal stability of the films. Such reactions are not involved in the film growth at a low (450 °C) filament temperature. These films have much lower (<2 at.%) bonded oxygen content. The films having an ordered (CF2)2n chain structure formed at 70 °C are characterized by low leakage currents ∼7 × 10−11 A cm−2 at 0.1 MV cm−1 field. In comparison, high leakage currents ∼1 × 10−8 A cm−2 are observed for the films having a higher concentration of C–F and C–CF bonds.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3